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One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic
interactions. Computational time in conventional molecular simulation methods scales withO(N2),
whereN is the number of atoms. With the emergence of new simulations methodologies, such as the
cell multipole method~CMM!, and massively parallel supercomputers, simulations of 10-million
atoms or more have been performed. In this work, the optimal hierarchical cell level and the
algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics
simulations of three-dimensional~3D! systems. CMM was then extended to treat
quasi-two-dimensional~2D! systems, which is very important for condensed matter physics
problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for
both 3D and 2D systems. Under the optimal conditions, our results show that computational time is
approximately linear withN for large systems, average error in total potential energy is about 0.05%
for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D
systems when compared with the Ewald summation. ©2003 American Institute of Physics.
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I. INTRODUCTION

The fast and accurate treatment of long-range Coulo
bic interactions for large systems is one of the most challe
ing tasks in computer simulations of charged particles. Fo
three-dimensional~3D! periodic system, the Ewald summa
tion method~EW3D! has been widely used to handle lon
range electrostatic interactions between charged partic
However, the Ewald summation method is computationa
very expensive since its complexity isO(N1.5) in an
N-particle system. A common approach is to truncate
interactions at a certain cutoff distance. This reduces op
tion count toO(N), but significantly sacrifices accuracy, pa
ticularly for long-range Coulombic interactions.1 Recently,
much effort has been devoted to improving the efficiency
the Ewald summation method and developing alterna
methods for large systems, such as the particle–particle
particle–mesh method~PPPM!4,5 and the cell multipole
method~CMM!.1–3 Both PPPM and CMM are more efficien
than the Ewald summation. CMM is well suited to massive
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parallel supercomputers due to its hierarchical tree struct
In particular, its multipole-based and hierarchical cell stru
tures are well suited to calculating long-range interactions
large systems. The cost is reduced formO(N2) to
O(N logN). With growing interest in surface and interfaci
systems, it is desirable to apply CMM to quasi-tw
dimensional~2D! systems, where periodicity exists in on
two dimensions.

In this work, the optimal hierarchical cell~e.g., level 2 or
3! and the algorithm for Taylor expansion~e.g., complex or
simple downward! were recommended for fast and efficie
molecular dynamics~MD! simulations of 3D systems. CMM
was then extended to MD simulations for quasi-2D syste
and grand canonical ensemble Monte Carlo~GCMC! simu-
lations for both 3D and quasi-2D systems. These meth
were tested on pure, binary, and ternary systems. This p
is organized as follows. In the next section we describe
basic ideas of CMM and the reduced cell multipole meth
~RCMM! for periodic systems in MD simulations, and th
extension of CMM to confined systems and to GCMC sim
lations. In the third section, various simulation results of puil:
7 © 2003 American Institute of Physics
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liquids or mixtures~i.e., water, methane, and dendrimers! in
bulk and confined systems by MD and GCMC simulatio
are given. Conclusions are presented in the final section

II. METHODOLOGY

A. Multipole approximation

The key idea of CMM is that by dividing a system in
cubic cells and using multipoles~i.e., charges, dipoles, an
quadrupoles! to represent these cells, a large number of
oms that lead toO(N2) computations for calculating long
range interactions in the far-field are replaced by these m
tiple moments.6,7 This replacement reduces computation
time to O(N logN). In order to maintain accuracy, nearb
nonbonded interactions are computed explicitly while dist
interactions are evaluated by multipoles and Taylor exp
sions.

CMM is used for any inverse power-law interactio
potential2 as V5( i . jqiqj /r i j

p , wherep51 for Coulombic,
p56 for Lennard-Jones~LJ! dispersive, andp512 for LJ
repulsive interactions. CMM can be divided into four part1

~i! Cell decomposition. The simulation system is decom
posed into a hierarchy of cells like a tree structure. The r
of the tree is the original system that is defined as leve
while the leaf of the tree is at the deepest level. The effec
each cell will be represented by multipole expansions.

~ii ! Multipole expansion. The multipole moments for al
the cells at the deepest level are first determined by usin25

Z5(
i

qi , ~1a!

ma5(
i

pqir ia , ~1b!

Qab5
1

2 ( qi@p~p12!r iar ib2pdabr i
2#, ~1c!

whereZ, ma , Qab are the charge, dipole, and quadrupo
r i is the distance between atomi and the center of the ce
containing atomi. a and b are thex,y,zcomponents in the
Cartesian system. Then, the multipoles at the higher leve
calculated by combining the corresponding multipole m
ments of eight child cells at the lower level. This proce
starts from the deepest level, and then moves upward to
root level ~level 0!. Thus, for a given atom, the potentia
energy from the far-field is evaluated by multipole mome
expansions:

Efor5
Z

Rp 1
maRa

Rp12 1
QabRaRb

Rp14 , ~2!

whereR is the distance between atomi and the center of the
cell in the far-field.

~iii ! Far-field multipole Taylor expansion. Since the mul-
tipole moments in the far-field are all the same for each a
in a given leaf cell, it is reasonable to expand the multip
moments in terms of a series of Taylor coefficients from
distant cells in the far-field to the center of the given c
instead of to each atom. This saves computational ti
Thus, Eq.~2! is changed to
Downloaded 17 Feb 2004 to 131.215.16.37. Redistribution subject to AIP
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Efar5j~0!1ja
~1!r a1jab

~2!r ar b , ~3!

wherej ( i ) is the summation ofith order of Taylor expansion
coefficients from multipole moments.r a is the distance be-
tween atomi and the center of the cell containing atomi. As
shown in Fig. 1, for one of eighty gray cell~in three dimen-
sions!, the simple downward algorithm involved Taylor ex
pansion coefficientsj ( i ), which are calculated by directly
summing all the contributions from far-field cells marked
1 and 2. However, as we can see in Fig. 1, eight gray ce
which come from the same parent cell, have exactly the sa
distant cells 2, but different cells 1. Thus, an alternative
ficient method for calculating the coefficients of the Tayl
expansion around the center of each gray cell is the so-ca
complex downward algorithm. In this algorithm, Taylor e
pansion is first established around the center of the pa
cell from distant cells 2. Taylor expansion around the cen
of each child cell consists of two contributions—by Tayl
expansion around the center of each child cell directly fr
distant cells 1 and by shifting Taylor expansion coefficie
around the center of the parent center obtained from dis
cells 2 in the center of each child cell using the followin
equations:

jgray
~0! 5j1

~0!1j2
~0!1j2,a

~1!r 81j2,ab
~2! r a8 r b8 ,

jgray,a
~1! 5j1,a

~1!1j2,a
~1!12j2,ab

~2! r b8 , ~4!

jgray,ab
~2! 5j1,ab

~2! 1j2,ab
~2! ,

wherej1 andj2 are the Taylor coefficients from distant cel
1 and 2, respectively.r 8 is the distance between the cente
of the parent and child cells.

~iv! Near-field and far-field computationsFor a given
leaf cell, it has 27 neighbor cells including itself and th
interactions in this near-field are computed explicitly
terms ofEnear51/2( i( j Þ i(qiqj /r i j

p ). The remaining far-field
interactionsEfar are evaluated by multipole moment expa
sions.

RCMM is a relatively simple way of extending CMM to
periodic systems. The most difficult problem with infini
crystals is to compute Coulombic interactions,Vi

5( i8qj /r i j , which are conditionally convergent.3 The key
idea of RCMM is that the original unit cell~containing 100
or 10 million atoms! is replaced by a reduced cell containin
a small number of randomly positioned fictitious charg
~e.g., 35 in this case!, which can reproduce up to 5th mult
pole moments of the unit cell. We solve 35 equations@Eq.
~1!# from the known multipoles~up to 5th multipole mo-
ments! of the unit cell for 35 fictitious charges. The diffe
ence between the reduced cell and the original cell is at
kth ~k55! multipole moments, which fall off very fast a
1/r K11. In RCMM, Coulombic interactions are divided int
two terms:8 ~a! the potential generated by charges in t
original unit cell and 26 nearest images neighbor cells, a
~b! the potential due to the fictitious charges in the remain
`227 cells. The first term~a! is calculated with CMM, and
the second term~b! involves the Ewald summation over fic
titious atoms.8 For short-range van der Waals~VDW! inter-
actions, RCMM is not needed.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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B. Extension to 2D systems

The RCMM method has been used to evaluate poten
energy and force in bulk systems where periodic bound
conditions are used in three dimensions. However, one o
encounters systems that are finite in one of the dimensi
such as adsorption and diffusion in slit pores. It is desira
to have a fast and efficient method to treat quasi-2D syste
One of the solutions is to use the EW3D for quasi-2D s
tems by introducing a large vacuum gap on the top of
slab. The height of the vacuum needs to be adjusted so th
avoids artificial effects in this direction. The method is co
putationally very slow. Various other approaches have b
developed to deal with qausi-2D systems. Parry9 adapted the
Ewald transformation to a laminar and semi-infinite syste
Heyes and co-workers derived surface formulas for poi
charge and point–dipole10–16 interactions to calculate poten
tial energy and force in molecular simulations. These t
methods are found to be most accurate, but the direct us
these Ewalds 2D formulas is known to be computationa
very expensive.24 Lekner17 developed a simple surface po
tential formula cast entirely as a Fourier series. However,
method was devised originally for square systems. Althou
the scheme has been extended to rectangular system
applicability is still limited.22,23 Hautman and Klein18 ~HK!
developed a novel expansion procedure, in which ther
interaction was decomposed into the in-plane and out
plane components in real space. But the HK method w
only applied for the system where the distribution of cha
ions in thez direction is small.22

In this work, a generalized quasi-2D CMM~CMM2D!
method was developed by combining the Heyes method w
RCMM for confined systems. The methodology of CM
and RCMM described in the previous section still can
applied to quasi-2D system. But, the periodic boundary c
dition is eliminated in thez direction, and the conventiona
EW3D summation used in RCMM to deal with fictitiou
charges was replaced by the Heyes method. For a quas
system, the original unit cell land its 26 neighbor cells a

FIG. 1. For the simple and complex downward, Taylor expansion is es
lished around the center of each child cell~dashed line! and of the parent
cell ~solid line! from distant cells 2, respectively. For the complex dow
ward, Taylor expansion around the center of each child cell is further es
lished based on the coefficients of the Taylor expansion around the cen
the parent cell.
Downloaded 17 Feb 2004 to 131.215.16.37. Redistribution subject to AIP
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e

treated by the CMM method to calculate LJ short-range a
Columbic long-range interactions. The distant cells with
fictitious charges in the RCMM part are treated by the He
method to handle long-range interactions. In the He
method, the surface lattice is constructed from layers of u
cells infinite in thex and y directions. The 2D real-spac
lattice vectorn is denoted asn5(nxL,nyL,L) with nx ,ny

integers and reciprocal lattice vectork52pn/L. The real-
space part of the potential energy is shown to be

Vreal5
1

2 (
i 51

N

(
j 51

N

( 8
un50u

`

qiqj

erfc~hur i j 1nu!
ur i j 1nu

, ~5!

where the adjustable parameterh is an arbitrary inverse-
length parameter; the erfc~x! „erfc(x)5(2/Ap)
3*x

`exp(2t2)dt… is complementary error function, whic
falls to 0 with increasingx. The value ofh determines rela-
tive emphasis given to the real- and reciprocal-space ter
If h increases, the real-space terms become less impo
and the reciprocal-space term became more important du
the erfc~x! function. The prime indicates that the casei 5 j
must be omitted forn50 since a particle cannot interact wit
itself. The reciprocal-space contribution to be potential e
ergy is shown to be

Vreciprocal5
1

2

p

A (
i 51

N

(
j 51

N

(
K

qiqjFKcos~K•r i j !, ~6!

wherer zi j is theZ component ofr i j . The in-plane area of the
simulation cell,A is equal toA5uL x3L yu:

FKÞ0

5

e~Kr zi j !erfcS K

2h
1r zi jh D1e~2Kr zi j !erfcS K

2h
2r zi j1h D

K
,

~7!

FK50522H r zi jerf~r zi jh!1
e2~r zi jh!2

hAp
J . ~8!

The existence of a distinct nonzero term withK50 is one of
the features of the surface formula that distinguishes it fr
the corresponding bulk Ewald expression,16 for which the
comparable term is equal to zero for an overall charge n
tral system. The self-energy term should be subtracted f
the total potential energy as for the bulk case,

Vself52
h

Ap
(
i 51

N

qi
2. ~9!

The final result for Coulombic interactions in quasi-2D sy
tem is

V5Vreal1Vreciprocal2Vself. ~10!

Recently, Kawataet al.26 used a Fourier integral for the
complimentary error function in Eq.~7! to improve compu-
tational efficiency. Mina´ry et al.28 designed a new formalism
in the reciprocal space to treat long-range interactions
quasi-2D systems. This formalism can be implemented in
standard plane-waved density function theory, Ewald, a

b-

b-
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the smooth particle-mesh Ewald method for surface calc
tions. In order to check our CMM2D simulation results, w
applied the EW3D technique to quasi-2D systems by add
a large vacuum space on the top of the slab. The inclusio
the vacuum space into the unit cell was done to avoid
artificial influence from periodic images in thez
direction.19–21 Spohr21 compared the results from this ap
proach with those from the two-dimensional Ewald summ
tion ~eW2D! method which was first introduced by Parr9

and later independently derived by Heyes, Barber,
Clarke.10 It was concluded that results for this approach co
verged to those of EW2D when the vacuum height was la
in the z direction. By increasing the height of the vacuu
space in thez direction, the slab with the vacuum space on
top can be modeled as a strict slab system. The real-s
lattice sum decreases quickly because 1/ur i j 1nu falls off very
fast in thez direction. The reciprocal vectorK52pn/L also
leads to a decrease in both exp(2K2/4h2) and 4p2/K2 terms
due to the large vacuum in thez direction. Thus, interactions
between the original simulation box and its image cells in
z direction with large vacuum height for a bulk system we
small. Potential energy will converge within a range of t
vacuum height. Jorge and Seaton27 tested a quasi-2D system
with water molecules by using full 2D Ewald sum and 3
Ewald sum methods with large empty spaces in thez direc-
tion. Their results show that the potential energy form the
Ewald sum converges to the value obtained from 2D Ew
sum with errors below 1%.

C. CMM in GCMC simulations

In grand canonical ensemble MC~GCMC! simulations,
chemical potential is fixed while the number of particl
fluctuates. The simulations are carried out at constantm, V, T
~chemical potential, volume, and temperature!. In GCMC
simulations, there are three different types of trials:~a! a
molecule is moved,~b! a molecule is destroyed, and~c! a
molecule is created at a random position. Each simula
step consists of one of the three attempts described ab
For a move attempt, the probability of a movement attem
being accepted is

Pmove
acc 5min@1,exp„2bDU~r !…# . ~11!

The probability of the creation attempt being accepted is

Pcreation
acc 5min@1,exp~2bDU~r !!1Bi2 ln~Ni11!#.

~12!

The probability of deletion being accepted is

Pdelete
acc 5min@1,exp„2bDU~r !…1 ln Ni2Bi #. ~13!

Here,b51/kBT, DU(r ) is the change in confirmation en
ergy;Ni is the number of molecules;V is the volume; andB
is defined as

Bi5bm i1 ln V, ~14!

wherem i is the configurational chemical potential of comp
nent i.

For creation attempt, when a new molecule is inserted
the original simulation box, it is assigned to a specific c
based on its coordinates. Then, both the molecule coo
Downloaded 17 Feb 2004 to 131.215.16.37. Redistribution subject to AIP
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nates and the cell number for the inserted molecule are
beled. The new trial configuration is updated in the origin
simulation box and copied to the image cells. It should
pointed out that our CMM update cost is computationa
cheap, i.e.,O~1! for each trial in GCMC simulations. From
the hierarchical tree structure, it is easy to identify near,
and`227 reduced cells for the labeled cell. Finally, pote
tial energy between this molecule in the labeled cell and
updated system including the inserted molecule and its
age cells is calculated using the methods discussed ab
The same procedure is used for deletion and movemen
tempts. The GCMC-CMM program was tested for a bina
system including dendrimer and water. Recently, Jorge
Seaton27 studied long-range interactions in GCMC simul
tions of water adsorption in a slit pore using various 2
Ewald sum methods, except for CMM.

III. RESULTS AND DISCUSSION

In this work, applications of the CMM method to MD
and GCMC simulations of bulk and confined systems will
discussed. The computational speed and accuracy of
CMM method for evaluating potential energy and force we
compared with those from the Ewald summation, minimu
image ~MI !, and Massively Parallel Simulation~MPSim!.
MPSim1 is a parallel simulation program with the CMM
method developed by Professor Goddard III’s group at
California Institute of Technology. The Ewald summatio
was also available from MPSim. Timing reported for vario
methods is based on a 400 MHz Silicon Graphics O2 R1
workstation. All structures were built using Cerius2 from Ac-
celrys, Inc.

A. MD simulations of bulk systems

Tests were first performed on the model of water. The
and charge parameters for water aresH52.886 Å, eH /k
522.144 K,qH50.41e, sO53.50 Å,eO/k530.196 K, and
qO520.82e from the universal force field~UFF!. The sys-
tem consists of 1664 water molecules with a dimension of
Å336 Å336 Å. Results are listed in Table I. Tables II an
III present the energy decompositions for VDW and Co
lombic interactions.

Regarding the level of CMM, as compared with level
computational time was reduced by;6.0 times at level 2 for
both the simple and complex downward algorithms, and
8.8 and 12 times at level 3 for the simple and complex dow
ward algorithms, respectively. Most computational time
level 1 was spent in calculating the near-field interactions
amount to 832736242584,105,216 pairwise interactions
However, at levels 2 and 3, the total near-field pairw
interactions dramatically decreased to 643273782

510,513,152 and 512327310251,382,400, respectively
Computational time in the CMM program is the sum of thr
terms: time for~a! near-field,~b! far-field, and~c! the re-
maining `227 cell interactions. The first term~a! depends
on the average number of atomsN in the deepest cell and i
proportional toO(N2). The more atoms are in the deepe
cell, the more computational time it will take. Computation
time for the second term~b! is approximately linear with
O(K), whereK is the number of far cells. The last term~c!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Computation of energy, RMS force, and CUP time for 1664 water molecules in the bulk from
Ewald summation, MPSim, minimum image, and our CMM3D program.

Method
Tayor

expansion Level M b nc
Energyd

~kcal/mol!
RMSe

~kcal/mol Å!
Time
~s!

Ewald ~213035.37! ~5.166! 668
Min. image 2619.07 0.648 48

MPSim 250.58 0.013 73
CMM Simplea 1 8 624 258.76 20.007 210

Complexa

MPSim 231.40 0.034 18
CMM Simplea 2 64 78 236.45 0.008 34
CMM Complexa 244.76 0.015 30

MPSim 24.28 0.032 9
CMM Simplea 3 512 9.8 3.33 0.030 24
CMM Complexa 24.63 0.027 17

aSimple or complex downward algorithm in the Taylor expansion described in Sec. II and no complex d
ward for level 1.

bNumber of cellsM in the deepest level.
cAverage number of atomsn in the leaf cell.
dThe potential energy is given for the Ewald summation in parentheses. Only the differences are given fo
methods.

eRMS5A( i 51
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3D
is constant at each level for a given system. Thus, there
ists an optimal level at which a large number of interactio
in the near-field will be compensated by relatively fewer
teractions in the far-field. Compared with the Ewald summ
tion method, an error in total energy at level 3 for CMM
less than 0.035%, and an error in the root mean squ
~RMS! force is about 0.52%, where the percentage errors
energy and RMS are the difference between calculated
ues from the CMM and Ewald methods divided by that fro
the Ewald method.

Regarding the simple and complex downward alg
rithms in Taylor expansion, the latter is faster than the sim
downward while maintaining the same order of errors in p
tential energy and RMS force. In the complex downwa
procedure, the Taylor series is obtained at the center
parent cell from distant cells 2~see Fig. 1!. Then, it is shifted
to the center of each child cell by multiplying the distan
between the centers of the parent cell and its child cell@see
Eq. ~4!#. Starting at the level-1 cells and recursively repe
ing this procedure, we can compute the Taylor coefficie
j ( i ) for all the cells at all levels. The complex downwa
expands the Taylor series only once~to the center of the
parent cell instead of eight times~to each child cell! in the
simple downward. It can be seen in Table I that at leve
computational time is improved by 29% while accuracy
mains similar. At level 2, there is no apparent difference
CPU time and accuracy between the simple and comp
downward algorithms since there are a large number of n
field interactions involved. The current program will signi
cantly speed up if data structures~e.g., indexes for each atom
and each cell! are optimized.

We also have studied dendrimers, water–methane bin
mixtures, as well as water–methane–dendrimer ternary m
tures with various compositions. The PAMAM dendrim
has an ammonia core and2CH2CH2CONHCH2CH2NH2
b 2004 to 131.215.16.37. Redistribution subject to AIP
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monomer units. Additional layers of monomer units can
tach to the nitrogen atoms of monomers such that the d
drimer grows like a tree~in contrast to a single chain poly
mer!. PAMAMs of generation 3~G-3!, 4, 5, and 6 have 382
814, 1678, and 3406 atoms, respectively. Nonbond inte
tions come from both inter- and intramolecular contribution
excluding 1–2 and 1–3 interactions. PAMAM dendrime
were built using POLYGRAF from Professor William A
Goddard III at the California Institute of Technology. Th
UFF force field was used to obtain LJ parameters, and
charge equilibration~QEq! method was applied to assig
charge to each atom in PAMAM dendrimers. For all L
cross-term parameters, the geometric mean combining
was used, namelye i j 5Ae i i •e j j and s i j 5As i i •s j j . For
methane, the UFF force field and QEq method were use
obtain LJ parameters and charges. The optimal results
butyl systems are given in Table IV. Results show that
level of CMM ~or average atom occupancy! is a key param-
eter in determining computational time and accuracy. T
optimal value for average atom occupancy in the leaf cel

TABLE II. Energy decompositions for van der Waals and Coulombic int
actions at each level for 1664 water molecules in the bulk from our CMM
program.

Taylor
expansion Level n

van der Waals sum
~kcal/mol!

Electrostatic sum
~kcal/mol!

Dispersion Repulsion CMM RCMM

Simple 1 624 28782.65 7004.30 210478.83 2836.95

Simple 2 78 28780.57 7004.30 210458.59 2836.95
Complex 2 78 28780.46 7004.30 210467.02 2836.95

Simple 3 9.8 28762.93 7003.72 210435.88 2836.95
Complex 3 9.8 28761.93 7003.72 210444.84 2836.95
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TABLE III. Energy from near- and far-field contributions for van der Waals and Coulombic interactions on each level for 1664 water molecules in
from our CMM3D program.

Taylor
expansion Level n

van der Waals
dispersion
~kcal/mol!

van der Waals
repulsion
~kcal/mol!

Coulomb
~kcal/mol!

Near Far Near Far Near Far RCMM

Simple 1 624 28779.39 23.26 7004.30 1.28E-6 211660.39 1181.56 2836.95

Simple 2 78 28751.16 229.41 7004.30 6.58E-4 212067.06 1600.04 2836.95
Complex 2 78 28751.16 229.30 7004.30 6.58E-4 212067.06 1600.04 2836.95

Simple 3 9.8 28523.16 2239.77 7003.38 0.34 28430.35 22005.53 2836.95
Complex 3 9.8 28523.16 2238.77 7003.38 0.34 28430.35 22014.48 2826.95
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3–10 atoms. Under the optimal condition, the complexdow
ward algorithm was preferred since it is generally faster th
the simple downward method with similar accuracy. Ene
error is about 0.05%, while the RMS force error is 0.27
The RMS force error in polymer systems is much sma
than that in those systems containing water or methane
CMM, atoms in the same water~or methane! molecule may
be divided into different cells. In this case, nonbonded int
actions between water molecules are changed from dipo
dipole interactions to charge–dipole or charge– charge in
actions. Thus, accuracy will be significantly improved if t
atom in the same group whose total charge is zero~e.g., a
whole water molecule or each residue in a protein! can be
assigned to the same cell as the deepest level.

B. MD simulations of confined systems

In this work, the EW3D as applied to quasi-2D syste
was used to check CMM2D results. Figure 2 shows t
potential energy and RMS force in dendrimer systems c
verge within a certain range of vacuum height in thez direc-
tion using the EW3D technique.20,21 According to Spohr21

and Jorge and Seaton,27 the conventional EW3D techniqu
Downloaded 17 Feb 2004 to 131.215.16.37. Redistribution subject to AIP
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with an appropriate vacuum space in thez direction repro-
duced EW2D results with an energy error of less than 1
but it is still quite time consuming. Since the EW3D as a
plied to quasi-2D is our reference and its error in energy
compared to strict EW2D is within 1%, a comparison b
tween our CMM2D and this reference is not as strict as in
systems.

A shown in Table V, computational time decreases d
matically as the level increases toN.1000. For example, for
a G-5 dendrimer having 1678 atoms, as compared with le
1, computational time decreases by 4.0 and 6.6 times at
els 2 and 3, respectively. For a G-6 dendrimer having 34
atoms, computational time decreases by 4.8 and 8.6 time
levels 2 and 3, respectively. Thus, the larger the system
the more computationally efficient the CMM method is. F
large systems computational time is approximately lin
with the number of atoms. At level 1, since there are a la
number of atoms in leaf cells, the near-field interactio
dominate overall computations. Thus, computational ti
depends quadratically (N2) on the number of atoms. Th
final optimal results for pure components~water or dendrim-
ers!, water–methane binary mixtures, and water–methan
TABLE IV. CPU time, RMS force, and relative energy error for bulk systems with the optimal parametern and using the complex downward algorithm

CMM M.I.

Na Level nb
Energy

~%!
RMS
~%!

Time
~s!

Energy
~s!

RMS
~%!

Time
~s!

Pure
Water 4992 3 9.8 0.04 0.520 17 4.75 12.54 48

dendrimer 382 2 6 0.003 0.054 1 1.91 0.07 1
814 2 13 0.08 0.080 2 1.14 0.06 1

1678 3 3.3 0.05 0.017 6 0.28 0.08 4
3406 3 7 0.04 0.020 28 0.53 0.08 19

Binary mixtures
water–methane 462 2 7.2 0.04 0.192 1 1.13 6.51 1

609 2 9.5 0.05 0.583 1 2.84 8.46 1
1848 3 3.6 0.07 0.630 5 0.85 1.66 6
3440 3 6.7 0.04 0.514 12 1.65 2.23 26

Ternary mixtures
dendrimer–water

methane
422 2 6.6 0.08 0.0001 1 1.84 1.14 1

891 2 14 0.06 0.35 2 1.43 0.64 1

aNumber of atoms in the simulation.
bAverage number of atomsn in the leaf cell.
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FIG. 2. Potential energy and RMS force vs vacuu
height in thez direction for PAMAM dendrimers in the
confined systems from the EW3D.~a! E5291.083 and
RMS force53.9658 for G-3 PAMAM with 382 atoms.
~b! E5729.051 and RMS force54.1791 for G-4
PAMAM with 814 atoms.~c! E5649.122 and RMS
force54.0721 for G-5 PAMAM with 1678 atoms.~d!
E521459.610 and RMS force53.9765 for G-6
PAMAM with 3406 atoms.
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dendrimer ternary systems listed in Table VI, in which t
optimal level~or average atom occupancy! and the complex
downward algorithm are shown. Comparing the accuracy
CMM with that of the Ewald summation, the error in pote
tial energy at levels 2 and 3 is comparable and is less t
0.32% for various systems. The RMS force error is ab
0.04% for dendrimer systems and 0.65% for water or me
ane systems. In general, CMM is faster than the MI meth
when the system contains more than 1000 atoms and is m
more accurate. The optimal value for average atom oc
pancy is 3–10 atoms at the deepest level. The comp
downward algorithm is generally faster than the simple o
with similar accuracy.

C. GCMC simulations of confined systems

A system with a dimension of 46.7 Å359.6 Å357.3 Å
was tested for a binary mixture of a G-5 PAMAM dendrim
and water in a confined system using our CMM-GCMC p
Downloaded 17 Feb 2004 to 131.215.16.37. Redistribution subject to AIP
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gram. The difference in energyDE between two different
configurations was calculated at each level for each GC
move. Results in Table VII show that potential energies c
culated from our CMM-GCMC program for various GCM
moves are consistent with those from our CMM-MD pr
gram. The slight difference among different levels for ea
move is due to approximations used in the calculation
far-field contributions.

IV. CONCLUSIONS

The CMM method is efficient in calculating both van d
Waals and Coulombic interactions with significantly lo
computational time and good accuracy. It is well suited
handling large systems with long-range interactions in m
lecular simulations. Simulation results show that the leve
the cell hierarchical tree~or average atom occupancy! in the
deepest cell is a key factor in determining computatio
time and accuracy. The optimal number of atoms in the de
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Computation of energy and CPU time for one G-3, G-4, G-5, or G-6 PAMAM dendrimer in the confined system from the Ewald sum a
CMM2D program.

N Method
Taylor

expansion Level M n
Energy

~kcal/mol!
RMS

~kcal/mol Å!
Time
~s!

382 Ewald ~291.083! ~3.9658!
M.I. 20.935 0.0040 1
CMM Simple 1 8 48 21.803 0.0020 1
CMM Simple 21.935 0.0015 1

2 64 6
CMM Complex 20.067 0.0004 1
CMM Simple 0.406 0.0008 5

3 512 0.7
CMM Complex 21.719 0.0026 4

814 Ewald ~2729.051! ~4.1791!
M.I. 23.831 0.0035 1
CMM Simple 1 8 102 23.754 0.0024 4
CMM Simple 23.748 0.0023 1

2 64 12.7
CMM Complex 21.652 0.0024 1
CMM Simple 6.859 0.0103 5

3 512 1.6
CMM Complex 5.558 0.0103 4

1678 Ewald ~2649.122! ~4.0721!
M.I. 26.122 0.0035 4
CMM Simple 1 8 210 22.420 0.0012 32
CMM Simple 7.393 0.0052 9

2 64 26
CMM Complex 7.630 0.0059 8
CMM Simple 5.113 0.0007 6

3 512 3.3
CMM Complex 6.008 0.0007 4

3406 Ewald ~21459.610! ~3.9765!
M.I. 29.872 0.0002 17
CMM Simple 1 8 428 5.916 0.0019 172
CMM Simple 2768 0.0014 36

2 64 63
CMM Complex 23.474 0.0014 36
CMM Simple 28.607 0.0008 21

3 512 6.7
CMM Complex 21.152 0.0005 19

TABLE VI. CPU time and percentage error in potential energy with an optimum level and using the complex downward algorithm for pure~water or PAMAM
dendrimeter!, binary mixture~water and methane!, and ternary mixture~water, methane, and dendrimer! in the confined system from our CMM2D program

CMM M.I.

Na Level nb
Energy

~%!
RMS
~%!

Time
~s!

Energy
~s!

RMS
~%!

Time
~s!

Pure
Water 4992 3 9.8 0.21 0.04 12 0.89 0.08 42

dendrimer 382 2 6 0.07 0.01 1 1.03 0.10 1
814 2 13 0.22 0.06 1 0.53 0.08 1
1678 3 3.3 0.92 0.08 4 0.94 0.09 4
3406 3 7 0.08 0.01 19 0.67 0.005 17

Binary mixtures
water–methane 462 2 7.2 0.22 1.32 1 2.11 8.32 1

609 2 9.5 0.44 .82 1 2.53 5.94 1
1848 3 3.6 0.15 0.89 3 0.20 1.62 5
3440 3 6.7 0.12 0.58 8 0.29 1.32 24

Ternary mixtures
dendrimer–water methane 422 2 6.6 0.86 0.81 1 3.74 1.51 1

891 2 14 0.28 0.09 1 1.21 0.10 1
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TABLE VII. A comparison of potential energy from our CMM-MD and CMM-GCMC programs.

Add

CMM-MD CMM-GCMC

Old
~kcal/mol!

New
~kcal/mol!

DE
~kcal/mol!

DE
~kcal/mol!

Level 1 Simple 242.18 242.108 20.072 20.068
Level 2 Simple 232.783 232.791 0.008 0.004

Complex 231.28 231.293 0.013 0.017
Level 3 Simple 233.733 233.717 20.016 20.025

Complex 232.683 232.712 0.029 0.033

Delete

CMM-MD CMM-GCMC

Old
~kcal/mol!

New
~kcal/mol!

DE
~kcal/mol!

DE
~kcal/mol!

Level 1 Simple 242.108 242.181 0.072 0.074
Level 2 Simple 232.791 232.783 20.008 0.0003

Complex 231.293 231.28 20.013 20.012
Level 3 Simple 233.717 233.733 0.016 0.029

Complex 232.712 232.683 20.029 20.028

Move

CMM-MD CMM-GCMC

Old
~kcal/mol!

New
~kcal/mol!

DE
~kcal/mol!

DE
~kcal/mol!

Level 1 Simple 242.1079 242.4757 0.368 0.364
Level 2 Simple 232.7917 233.2285 0.437 0.433

Complex 231.2931 231.7315 0.438 0.435
Level 3 Simple 233.7171 234.1922 0.475 0.455

Complex 232.7122 233.211 0.499 0.495
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est cell is 3–10. The complex Taylor expansion algorithm
faster than the simple one with similar accuracy. Under
optimal conditions, the average error in total potential ene
is about 0.05% and the RMS force is 0.27% when compa
with the Ewald summation method while computational
ficiency improves significantly. Results show that the co
putational time of the CMM method scales almost linea
with the number of atoms in the cell for large systems.

The CMM method was extended to confined systems
MD simulations. Potential energies calculated from o
CMM2D program are consistent with those from the EW3
technique applied to quasi-2D systems by adding a su
ciently large vacuum space on the top of the slab. The
ference in total potential energy between these two meth
is 0.32% and RMS force error 0.43%. Moreover, the CM
method was applied to GCMC simulations for both 3D a
2D systems. Our CMM code is readily incorporated in t
GCMC, MD, and grand canonical molecule simulati
~GCMD! programs for applications, such as studies of
sorption and diffusion in pores.
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